x | x | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BACTERIOLOGY | IMMUNOLOGY | MYCOLOGY | PARASITOLOGY | VIROLOGY | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dr Alvin Fox
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Let us know what you think |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Logo image © Jeffrey Nelson, Rush University, Chicago, Illinois and The MicrobeLibrary |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
KEY WORDS Prokaryotic
|
Prokaryotes and eukaryotes "True" bacteria (which include all bacteria that infect man) are members of one kingdom (the eubacteria, bacteria). In addition, a group of organisms often found in extreme environments form a second kingdom (archaebacteria, Archaea). Morphologically, the two kingdoms of organisms appear similar, especially in the absence of a nucleus, and thus are classified together as prokaryotes. However, they have major biochemical differences. Most archaea live in environments such as hot sulfur springs where they experience temperatures as high as 80 degrees C and a pH of 2. These are called thermoacidophiles. Others live in methane-containing (methanogens) or high salt (extreme halophiles) environments. Archaea Based on DNA sequence similarities, it appears that the archaea and eukaryotes diverged from the eubacteria before they diverged from each other (figure 1a) and in some ways, archaea are biochemically more like eukaryotes than they are the eubacteria. For example, the RNA polymerase of archaea is as complex, in terms of number of subunits, as the eukaryote nuclear polymerases and there is considerable amino acid homology with some of the eukaryotic subunits. Gene promoter structure in archaea is also more similar to that of eukaryotes than eubacteria, although, like the eubacteria, archaea have operons and transcribe these to polycistronic mRNA. Similarity also exists between the protein synthesis factors of archaea and eukaryotes suggesting that the overall protein synthesis mechanisms of eukaryotes and archaea may be similar. The 16S rRNAs of the eubacteria and the archaea are quite distinct in sequence. Eubacteria (with the exception of the genera Mycoplasma and Chlamydia) possess peptidoglycan (synonyms: murein, mucopeptide, cell wall skeleton). Peptidoglycan, contains a unique sugar, muramic acid, not found elsewhere in nature. Archaebacteria contain a pseudomurein that is different in structure from eubacterial murein. In view of the increasing number of similarities between the archaea and the eukaryotes, the term archaebacteria is no longer used. All other cellular forms of life (including plants, animals, and fungi) are referred to as eukaryotes. Members of the Archaea are not human pathogens and will not be discussed further.
The prokaryotic cell, in contrast to the eukaryotic cell, is not compartmentalized. Nuclear membranes, mitochondria, endoplasmic reticulum, Golgi body, phagosomes and lysosomes are not present (Figures 1b, 2 and 3). Prokaryotes generally possess only a single circular chromosome. Since there is no nuclear membrane, the chromosome is bound to a specific site on the cell membrane - the mesosome. Prokaryotic ribosomes are 70S (S stands for Svedberg unit, a measure of size), whereas eukaryotic ribosomes are larger (80S). Prokaryotic ribosomal subunits are 30S and 50S (eukaryotic are larger). The 30S ribosome has 16S RNA, whilst the 50S ribosome contains 23S and 5S RNA. Ribosomal RNA is larger in eukaryotes (e.g. 18S versus 16S rRNA). Bacterial membranes generally do not contain sterols (e.g. cholesterol). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figure 1b. Comparison of eukaryotes and "eubacterial" prokaryotes |
BACTERIAL STRUCTURES Despite their lack of complexity compared to eukaryotes, a number of eubacterial structures may be defined. Not all bacteria possess all of these components.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wall-less forms of Bacteria |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Flagella |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figure 5. E. coli with fimbriae (TEM x17,250) © Dennis Kunkel Microscopy, Inc. Used with permission |
Pili (synonym: fimbriae) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figure 6 Capsule-producing bacillus-shaped bacteria. The capsule is composed of polysaccharides and polyproteins. Capsules have a role in adherence, virulence, protection, securing nutrients, and cell-to-cell recognition. Capsules vary in thickness and can easily be 2 times the volume of the organism. In a capsule stain, the background is stained grayish blue and the cells are stained red. The capsule is unstained and appears as a halo around the cell. © Judy Bowen Buckman Laboratories International, Inc. Memphis, Tennessee, USA and The MicrobeLibrary |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figure 7 A Bacillus cereus spores (green) and cells not forming spores (pink) © Ralph Van Dyke Jr. The Des Moines University Osteopathic Medical Center, Des Moines, Iowa USA and The MicrobeLibrary
B An immature spore is shown surrounded by the mother cell (sporangium). A copy of the bacterial DNA is encased within the developing spore. The outer spore coat appears thinner and less electron dense than in the mature spores. © Donald Stahly, University of Iowa, Iowa City, Iowa and The MicrobeLibrary
D
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Return to the Bacteriology Section of Microbiology and Immunology On-line
|